Applying Clang Thread Safety
Analysis to the Linux Kernel

Lukas Bulwahn
Clang-Built Linux Workshop, February 2020
Licensed CC-BY-4.0

Outline

* Motivation

* Clang Thread Safety Analysis

* Existing Tools used in Linux

e Our Attempt and Results, incl. Random Impressions

e Suggestions for the Future

Motivation

* A next step after ,building Linux with clang®:
* Make use of all the small nice clang static analyses...
* motivated by Nick’s presentations and suggestions for future work

* Have an analysis during kernel build time that can guarantee that
potentially concurrently accessible data cannot be accessed without

locking (no race conditions) Real Plan:
e Plan Illussion: * Find out what the tool can do
* Run a new static analysis on the kernel... « Find a way to get some parts
* Find thousands of bugs... of the kernel covered
* Fix them... * Prove that it is maintainable
* Become a hero * Get piece by piece mainline

e Catch bugs when wrong
changes happen...

Clang Thread Safety Analysis

* a C++ language extension in Clang, also works for C
e warns about potential race conditions in code

* developed by Google & CERT/SEI

* “like a type system for multi-threaded programs”

* based on checking developer annotations for each variable and
function

Existing Tools used in Linux

* Many tools already out there for checking for concurrency issues:
* sparse
* smatch
e coccinelle (mini_lock.cocci rule)
* lockdep
* KCSAN
* coverity?
* some tool from Jia-Ju Bai, Julia Lawall et al. (not open-source) [USENIX ATC ‘19]
. ?

Himanshu‘s Report on tool capabilities:
https://github.com/himanshujhal199640/linux-kernel-analysis/tree/report/gsoc19/reports

Being applied for years... so, we knew our real chances...

On my TODO list: have an overall kernel documentation explaining what all the different tools do for checking on concurrency issues.

Include / linux / compiler_attributes.h

#if __ has_attribute(capability)

define _ capability(x) __attribute_ ((capability(x)))

define _ acquires_mutex(x) __attribute_ ((acquire_capability(x)))

define _ releases_mutex(x) __attribute_ ((release_capability(x)))

define _ try_acquires_mutex(r, x) __attribute_ ((try_acquire_capability(r, x)))
define _ requires_mutex(x) __attribute_ ((requires_capability(x)))

include / linux / mutex.h

extern void mutex_ lock(struct mutex *lock) _ acquires mutex(lock);

extern int _ must _check mutex lock interruptible(struct mutex *lock) _ try acquires _mutex(©, lock);

196 extern int mutex_trylock(struct mutex *lock) _ try acquires mutex(1l, lock);

extern void mutex_unlock(struct mutex *lock) _ releases mutex(lock);

$ make -jl1 HOSTCC=clang-8 CC=clang-8
CFLAGS_KERNEL="-Wthread-safety"' 2>&1 > /dev/null

Now just annotate all functions...

drivers/net/ethernet/realtek/r8169.c:740:1: warning: mutex 'tp->wk.mutex' is still held at the end of function [-Wthread-safety-
analysis]

}

A

drivers/net/ethernet/realtek/r8169.c:739:2: note: mutex acquired here
mutex_lock(&tp->wk.mutex);

drivers/net/ethernet/realtek/r8169.c:744:2: warning: releasing mutex 'tp->wk.mutex' that was not held [-Wthread-safety-analysis]
mutex_unlock(&tp->wk.mutex);

" v 4 EEEE" drivers/net/ethernet/realtek/r8169.c [E&

b3 £ @@ -734,12 +734,12 @@ static inline struct device *tp to dev(struct rtl8169 private *tp)

return &tp-»>pci_dev->dev;

- static void rtl_lock work(struct rtl8169_private *tp)

+ static void rtl_lock work(struct rtl8169 private *tp) _ acquires_mutex(tp->wk.mutex)

{
mutex lock(&tp->wk.mutex);

42 static void rtl_unlock work(struct rtl8169 private *tp)
42 4+ static void rtl_unlock work(struct rtl8169 private *tp) _ releases mutex(tp->wk.mutex)
{

mutex_unlock(&tp->wk.mutex);

R

https://github.com/ClangBuiltLinux/thread-safety-analysis/commit/ccf6a9d69dc3dele351f3025c8f59efb9d8a66f6

https://github.com/ClangBuiltLinux/thread-safety-analysis/commit/ccf6a9d69dc3de1e351f3025c8f59efb9d8a66f6

v 4 HEEE

b3 E4

IR

drivers/net/ethernet/realtek/rg8169.c

|_""*_'_ID

mo -734,12 +734,12 @@ static inline struc evice * 0 dev(struct rtl8169 private *
tatic inli truct device *tp to dev(struct rtl8169 private *tp

+

return &tp->pci dev->dev;

static void rtl lock work(struct rtlg8169 private *tp)

static void rtl lock work(struct rtlg8169 private *tp) acquires mutex(tp->wk.mutex)

1
mutex lock(&tp->wk.mutex);

static void rtl unlock work(struct rtl8169 private *tp)

static void rtl unlock work(struct rtl8169 private *tp) _ releases mutex(tp->wk.mutex)

{

mutex _unlock(&tp->wk.mutex);

static int _ d unalias(struct inode *inode, fS ; dCﬂChE C

struct dentry *dentry, struct dentry *alias)

{ static int d unalias(struct inode *inode,
struct mutex *ml = NULL; struct dentry *dentry, struct dentry *alias)
struct rw_semaphore *m2 = NULL; {
int ret = -ESTALE; /* If alias and dentry share a parent, then no extra lock
if (alias-»>d_parent == dentry->d_parent) {
/* If alias and dentry share a parent, then no extra locks required */ _ d move(alias, dentry, false);
if (alias-»>d parent == dentry->d parent)
. return @;
goto out unalias;
¥
/* see lock_rename() */ /* see lock_rename() */
it (Imutex_trylock(&dentry-»>d_sb->s_vfs_rename_mutex)) if (Imutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
goto out _err; return -ESTALE;
ml = &dentry->d_sb->s_vfs rename mutex; if (linode trylock shared(alias->d _parent-»>d _inode)) {
if (!inode_trylock shared(alias->d_parent->d_inode)) mutex_unlock(&dentry->d_sb-»>s_vfs_rename_mutex);
goto out_err; return -ESTALE;
m2 = &alias-»>d _parent->d_inode->i rwsem; }
out_unalias: __d move(alias, dentry, false);
__d_move(alias, dentry, false); up_read(&alias->d _parent->d_inode->i_rwsem);
ret = 6; mutex unlock(&dentry->d sb-»>s vfs rename _mutex);
out_err:
- return @;
if (m2)
h
up_read(m2);
if (m1)

mutex unlock(ml);

return ret;

Our attempts and results

Annotations on mutex primitives (around August 2019)
e 208 effective annotations

* 98 silencing annotations

* ~150 remaining warnings on defconfig

Annotations on spinlock primitives (by Himanshu Jha)
» 77 effective annotations

e 108 silencing annotations

e 281 remaining warnings on defconfig

Investigation on spinlocks, done by Himanshu Jha (GSoC student 2019):

https://github.com/ClangBuiltLinux/thread-safety-analysis/tree/clang-thread-safety-analysis-spinlock

Investigation on mutexes:

https://github.com/ClangBuiltLinux/thread-safety-analysis/tree/clang-thread-safety-analysis-v3

https://github.com/ClangBuiltLinux/thread-safety-analysis/tree/clang-thread-safety-analysis-spinlock
https://github.com/ClangBuiltLinux/thread-safety-analysis/tree/clang-thread-safety-analysis-v3

Recording False Positives

https://github.com/clangbuiltlinux/thread-safety-analysis/issues

conditionally held locks Known limitation of thread safety analysis 56 open issues .
analysis does not handle aliases 21 open issues
We would need to annotate and refer to the function's 4 open issues

return value

special locking/unlocking Code uses a special pattern to lock or unlock 4 open issues

https://github.com/clangbuiltlinux/thread-safety-analysis/issues

conditionally held locks Known limitation of thread safety analysis 56 open issues .

- static inline void trace access lock(int cpu)
+ static inline void trace access lock(int cpu) _ acquires mutex(cpu access lock) no thread safety analysis
{
if (cpu == RING BUFFER_ALL CPUS) {
/® gain 1t for accessing the whole ring buffer. */

down write(&all cpu_access lock);

} else {

/® gain 1t for accessing a cpu ring buffer. */

/® Firstly block other trace access lock(RING BUFFER_ALL CPUS). */

down read(&all cpu access lock);

/* Secondly block other access to this @cpu ring buffer. */

mutex lock(&per cpu(cpu access lock, cpu));

d m i vVers f b as E!‘, core.c conditionally held locks Known limitation of thread safety analysis 56 open issues .

1f (parent)
device lock(parent);

device lock(dev);

device unlock(dev);
1f (parent)

device_unlock(parent);

Suggestions for the Future

* Try other static analysis tools based on clang...
* Improve clang thread safety analysis

 Slowly get more annotations in the kernel (consolidate annotations
and piggy-back on the existing sparse&lockdep annotations)
* Understand why did interest in sparse annotations fade away?

* We actually never annotated variables with ___guarded_by(<lock>)

Simple Improvements #1

* Allow configuring if unbalances due to certain callers shall be warned
about, e.g., have annotations to warn at a certain warning level

* Annotate lock & unlock to let the analysis know they acquire & release, but
do not warn about all unbalanced functions due to lock & unlock

* Only warn if the further functions (users) are actually annotated wrong

=> No need to silence all false positives with useless annotations

Simple Improvements #2

* Increase details of reporting on the analysis results (function coverage
of analysis)

 How many functions are analysed with a given set of annotations?

* Which specific annotation contributes to the analysis of other specific
functions?

 How many functions are ignored due to "no thread safety analysis"
annotations in the whole build?

* Which annotations have no further impact beyond the local scope of the
annotated function?

Get more annotations in the kernel

Patches with __no_thread safety analysis are not going to be
accepted...

... but if there are USEFUL annotations for one tool (e.g. a coccinelle
rule) to classify and check certain classes of functions, e.g.
conditionally_acquire(...) ...

... Just use those for the other tools to NOT report warnings on such
annotations (false positive annotations in disguise...)

Conclusion

Clang Thread Safety Analysis:

* Nice small experiment... Easy setup... runs quickly...
* It is suitable for students/mentees to work on...

* Not the most promising results though...

Will | ever get back to annotate everything to reach zero warnings on defconfig?

Suggestions for alternative tools to look into?

Thank you!

Many thanks to

* Nick Desaulniers sor motivating this work and providing a home at the Clang-Built Linux github organisation

e Himanshu Jha for his work in this investigation

* Google Summer of Code program tound timanshu's work

* the Linux Foundation tor serving as umbrella organisation in the GsoC program

* Arnd Bergmann, Neil Brown and Nicholas McGUIre for review and discussion of two RFC

patch proposals (one patch where the tool completely confused me and | send a patch breaking things rather than fixing them)

¢ GOOQ/E’S O,DEI’)-SOUI‘CE Pl’Ogl‘Gm Officefortheinvitation to this workshop

