
Applying Clang Thread Safety 
Analysis to the Linux Kernel

Lukas Bulwahn

Clang-Built Linux Workshop, February 2020

Licensed CC-BY-4.0



Outline

• Motivation

• Clang Thread Safety Analysis

• Existing Tools used in Linux

• Our Attempt and Results, incl. Random Impressions

• Suggestions for the Future



Motivation

• A next step after „building Linux with clang“:
• Make use of all the small nice clang static analyses…
• motivated by Nick‘s presentations and suggestions for future work

• Have an analysis during kernel build time that can guarantee that
potentially concurrently accessible data cannot be accessed without
locking (no race conditions)

• Plan Ilussion:
• Run a new static analysis on the kernel…
• Find thousands of bugs…
• Fix them…
• Become a hero

Real Plan:
• Find out what the tool can do
• Find a way to get some parts

of the kernel covered
• Prove that it is maintainable
• Get piece by piece mainline
• Catch bugs when wrong

changes happen…



Clang Thread Safety Analysis

• a C++ language extension in Clang, also works for C

• warns about potential race conditions in code

• developed by Google & CERT/SEI

• “like a type system for multi-threaded programs”

• based on checking developer annotations for each variable and
function



Existing Tools used in Linux

• Many tools already out there for checking for concurrency issues:
• sparse
• smatch
• coccinelle (mini_lock.cocci rule)
• lockdep
• KCSAN
• coverity?
• some tool from Jia-Ju Bai, Julia Lawall et al. (not open-source) [USENIX ATC ‘19]
• …?

Himanshu‘s Report on tool capabilities:
https://github.com/himanshujha199640/linux-kernel-analysis/tree/report/gsoc19/reports

Being applied for years… So, we knew our real chances…

On my TODO list: have an overall kernel documentation explaining what all the different tools do for checking on concurrency issues.



$ make -j1 HOSTCC=clang-8 CC=clang-8

CFLAGS_KERNEL="-Wthread-safety"' 2>&1 > /dev/null



Now just annotate all functions…



https://github.com/ClangBuiltLinux/thread-safety-analysis/commit/ccf6a9d69dc3de1e351f3025c8f59efb9d8a66f6

https://github.com/ClangBuiltLinux/thread-safety-analysis/commit/ccf6a9d69dc3de1e351f3025c8f59efb9d8a66f6






Our attempts and results

Annotations on mutex primitives (around August 2019)

• 208 effective annotations

• 98 silencing annotations

• ~150 remaining warnings on defconfig

Annotations on spinlock primitives (by Himanshu Jha)

• 77 effective annotations

• 108 silencing annotations

• 281 remaining warnings on defconfig

Investigation on spinlocks, done by Himanshu Jha (GSoC student 2019):

https://github.com/ClangBuiltLinux/thread-safety-analysis/tree/clang-thread-safety-analysis-spinlock

Investigation on mutexes:

https://github.com/ClangBuiltLinux/thread-safety-analysis/tree/clang-thread-safety-analysis-v3

https://github.com/ClangBuiltLinux/thread-safety-analysis/tree/clang-thread-safety-analysis-spinlock
https://github.com/ClangBuiltLinux/thread-safety-analysis/tree/clang-thread-safety-analysis-v3


Recording False Positives

https://github.com/clangbuiltlinux/thread-safety-analysis/issues

https://github.com/clangbuiltlinux/thread-safety-analysis/issues






Suggestions for the Future

• Try other static analysis tools based on clang…

• Improve clang thread safety analysis

• Slowly get more annotations in the kernel (consolidate annotations
and piggy-back on the existing sparse&lockdep annotations)
• Understand why did interest in sparse annotations fade away?

• We actually never annotated variables with __guarded_by(<lock>)



Simple Improvements #1

• Allow configuring if unbalances due to certain callers shall be warned 
about, e.g., have annotations to warn at a certain warning level

• Annotate lock & unlock to let the analysis know they acquire & release, but 
do not warn about all unbalanced functions due to lock & unlock

• Only warn if the further functions (users) are actually annotated wrong

=> No need to silence all false positives with useless annotations



Simple Improvements #2

• Increase details of reporting on the analysis results (function coverage 
of analysis)

• How many functions are analysed with a given set of annotations?

• Which specific annotation contributes to the analysis of other specific 
functions?

• How many functions are ignored due to "no thread safety analysis" 
annotations in the whole build?

• Which annotations have no further impact beyond the local scope of the 
annotated function?



Get more annotations in the kernel

Patches with __no_thread_safety_analysis are not going to be
accepted…

… but if there are USEFUL annotations for one tool (e.g. a coccinelle
rule) to classify and check certain classes of functions, e.g. 
__conditionally_acquire(…) …

… Just use those for the other tools to NOT report warnings on such 
annotations (false positive annotations in disguise…) 



Conclusion

Clang Thread Safety Analysis:

• Nice small experiment... Easy setup… runs quickly…

• It is suitable for students/mentees to work on…

• Not the most promising results though…
Will I ever get back to annotate everything to reach zero warnings on defconfig?

Suggestions for alternative tools to look into?



Thank you!

Many thanks to

• Nick Desaulniers for motivating this work and providing a home at the Clang-Built Linux github organisation

• Himanshu Jha for his work in this investigation

• Google Summer of Code program to fund Himanshu's work

• the Linux Foundation for serving as umbrella organisation in the GSoC program

• Arnd Bergmann, Neil Brown and Nicholas McGuire for review and discussion of two RFC 

patch proposals (one patch where the tool completely confused me and I send a patch breaking things rather than fixing them)

• Google‘s Open-Source Program Office for the invitation to this workshop


